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Abstract: Detecting facial key point positions on images is a challenging task since facial features differ significantly 

from one individual to another. Even for a certain individual, there is an occurrence of wide variations due to factors 

such as size, position, viewing angle, and illumination effects. In this paper, we present a system that trains and 

compares multiple neural networks and try to optimize their learning rate constantly. This juxtaposes the different 

levels of accuracy obtained in predicting the facial key points in images even with a wide array of significantly varying 

facial features. Our method uses a simple three-layer neural network and distinct variations of convolutional neural 

networks. 
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I. INTRODUCTION 

 

The dataset we are working with is taken from an ongoing 

contest - Facial Keypoints Detection [1] on Kaggle, which 

was made available by Dr. Yoshua Bengio of the 

University of Montreal. Training dataset consists of 7049 

images with coordinates of 15 keypoints. Test dataset 

consists of 1783 images. All images are 96x96 pixels. 

Training, testing, and validation of a neural network and 

deep neural networks with a large number of layers is a 

time-consuming process. Therefore, for implementing and 

training the neural networks much faster, we utilized GPU 

for data-intensive calculations. Theano [2][3] is a Python 

library that enables dynamic generation of optimized C 

code that can be executed much faster on a CUDA capable 

GPU. 
 

II. RELATED WORK 

 

Cascaded Convolutional Networks 

Yi Sun, Xiaogang Wang & Xiaoou Tang [4] designed a 

method for determining the positions of keypoints on 

facial images with the help of a meticulously planned 3 

level convolutional neural network. At every level, the 

outputs of the different neural networks are combined for 

an accurate prediction. With the help of convolutional 

network deep structures, they extract global high level 

facial features easily for the entire face region at the 

initialization stage itself. This constitutes towards high 

accuracy prediction of the keypoints. Moreover, since they 

train the networks to predict every keypoint at the same 

time sequentially, geometric constraints are thus encoded 

implicitly. But even with high accuracy and reliable 

prediction, it has been noticed that this technique has a 

limitation that does not enable inputs to large regions for 

the initial prediction.  
 

Color Image Face Detection 

Rein-Lien Hsu et al. [5] proposed an algorithm for facial 

detection in digital color images even with different  

 

 

Illumination conditions and high background complexity. 

It utilizes an illumination compensation method and also a 

nonlinear color transformation for detecting skin patches 

spanning the entire image. It then generates face entities 

according to spatial arrangement of the detected skin 

regions. The authors suggest creating boundary maps for 

verification of the face candidates but they still face 

difficulty in high-luma and low-luma skin tones in color 

images. 

 

DropConnect Regularization 
Li Wan, Matthew Zeiler et al. [6] introduced the concept 

of DropConnect, which is a generalized version of 

DropOut method. The paper proposes this new technique 

where, instead of each connection, each output unit can be 

dropped with an alternate probability of (1 - p). The 

authors use DropConnect to regularize large fully 

connected network layers within each neural network. For 

training purposes, an arbitrarily selected subset of weights 

within each network layer is set to zero. Each unit 

therefore receives an arbitrary subset of units as input from 

the previous layer. It is noticed that the dynamic sparsity is 

beset on the weights and not on the output vectors of 

previous network layers. Finally, it derives a bound on 

performance based on generalization for both DropOut 

and DropConnect. 

 
Fig. 1 : Model’s facial keypoint prediction on a test digital 

image. 
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III. SYSTEM DESIGN 

 

Simple 3 Layer Network or Single Hidden Layer 

Network 
We trained a simple fully connected neural network with a 

single hidden layer with initially 50 neurons in the hidden 

layer. The first of the three layers is the input layer with 

9216 neurons which are fed with 9216 pixel values for 

each image.  
 

The output layer was defined with 30 neurons representing 

the 15 keypoints with x and y coordinate for each 

keypoint. 
 

The weights for this network were randomly initialized 

and updated on each iteration (epoch) with an optimization 

technique known as Nesterov's Accelerated Gradient 

Descent (NAG). 

 

The training of a neural network is handled by tweaking 

some hyper-parameters. Hyper-parameters such as 

Learning rate and Momentum are associated in training a 

neural network that is optimized using NAG.  
 

The objective function used is Mean Squared Error(MSE) 

as this a regression task. The training phase is executed for 

400 times which optimized weights at the end of each 

iteration. In training the network, we reached a minimum 

of 2.989 for MSE with this simple method. 

 

Convolutional Neural Network 
Convolutional neural networks are a major reason for the 

recent breakthrough in computer vision. This approach is 

different from the network involving fully connected 

layers. Convolutional layers use local connectivity and 

pool sharing which decrease the number of parameters. A 

unit in a convolutional layer connects a 2-dimensional 

matrix of neurons from the previous layer. 

 

The network implemented consists of 3 convolutional 

layers and 2 fully connected layers. Each convolutional 

layer is followed by a max-pooling layer. We found that at 

around 1000 epochs, the network reaches 1.95 MSE and 

doesn't improve much further. 

 

Optimizing hyper-parameters 
To train the networks we initialized the hyper-parameters, 

Learning rate as 0.1 and Momentum as 0.9. These 

parameters are used by the optimization method to update 

the weights for the next iteration. Using static hyper-

parameters is not an efficient approach. Changing these 

dynamically as the number of iterations increase is an 

approach suggested by Ilya Sutskever et al. [7].  

 

The learning rate is decreased linearly with the number of 

iterations. Because, when we start training the model we 

are farther away from an optimal state. Momentum, on the 

other hand, is increased. These changes make the training 

much faster and compared to the convolutional neural 

network with static hyper-parameters, this approach stops 

improving at around 750 iterations. 

IV. CONCLUSION 

 

Thus restating our proposed thesis and summarizing the 

main points of this paper, we conclude stating that we 

have tested two neural networks, namely a single hidden 

layer network and a conventional neural network. Both of 

the networks have been trained using hyper-parameters in 

order to automatically update the weights for the next 

iteration. However, on testing, it has been observed that 

even though the latter network takes much more time to be 

trained, it reaches a much better MSE than that of its 

former counterpart hence proving to be a much more 

viable option. 
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